专利摘要:
本發明提供一種可防止磁鐵特性降低之稀土類永久磁鐵及稀土類永久磁鐵之製造方法。本發明係以如下方式構成:將磁鐵原料粉碎成磁鐵粉末,藉由使經粉碎之磁鐵粉末與包含長鏈烴或不含有氧原子之單體之聚合物、共聚物或該等之混合物的黏合劑加以混合而生成混合物。並且,使所生成之混合物成形為片狀而製作生胚片材。其後,藉由使所製作之生胚片材於非氧化性環境下以黏合劑分解溫度保持一定時間而使黏合劑藉由解聚反應等而分解為單體並飛散而去除,對去除黏合劑之生胚片材使溫度上升至煅燒溫度而進行燒結,藉此製造永久磁鐵1。
公开号:TW201301312A
申请号:TW101109955
申请日:2012-03-22
公开日:2013-01-01
发明作者:太白啟介;久米克也;奧野利昭;尾關出光;大牟禮智弘;尾崎孝志
申请人:日東電工股份有限公司;
IPC主号:H01F1-00
专利说明:
稀土類永久磁鐵及稀土類永久磁鐵之製造方法
本發明係關於一種稀土類永久磁鐵及稀土類永久磁鐵之製造方法。
近年來,關於油電混合車或硬碟驅動器等中所使用之永久磁鐵馬達,要求小型輕量化、高功率化、高效率化。因此,於實現上述永久磁鐵馬達之小型輕量化、高功率化、高效率化時,對於埋設於馬達中之永久磁鐵,要求薄膜化及磁特性之進一步提高。
此處,作為用於永久磁鐵馬達之永久磁鐵的製造方法,先前以來通常係使用粉末燒結法。此處,粉末燒結法係首先製造將原材料藉由噴射磨機(乾式粉碎)等粉碎之磁鐵粉末。其後,將該磁鐵粉末放入模具中,一面自外部施加磁場一面壓製成形為所期望之形狀。並且,藉由將成形為所期望之形狀的固體狀之磁鐵粉末於特定溫度(例如Nd-Fe-B系磁鐵為1100℃)下燒結而製造。
然而,若藉由上述粉末燒結法而製造永久磁鐵,則有以下問題方面。即,於粉末燒結法中,為了進行磁場配向而必需確保壓製成形之磁鐵粉末有一定之空隙率。並且,若將具有一定之空隙率之磁鐵粉末燒結,則難以使燒結時所產生之收縮均勻,而於燒結後產生翹曲或凹陷等變形。又,由於壓製磁鐵粉末時會產生壓力不均,因此燒結後之磁鐵會變疏密而於磁鐵表面產生應變。因此,先前必需預先假定磁鐵表面形成應變,並以大於所期望之形狀之尺寸將磁鐵粉末壓縮成形。並且,於燒結後進行金剛石切削研磨工作,進行修正成所期望之形狀之加工。其結果為,有使製造步驟增加,並且所製造之永久磁鐵的品質降低之虞。
又,尤其是若藉由如上所述將薄膜磁鐵自較大尺寸之塊體切出而製造,則產生材料良率之顯著降低。又,亦產生加工工時大幅增加之問題。
因此,作為解決上述問題之手段而提出有藉由混練磁鐵粉末與黏合劑而製作生胚片材,並將所製作之生胚片材燒結藉此製造永久磁鐵之技術(例如,日本專利特開平1-150303號公報)。 先前技術文獻專利文獻
專利文獻1:日本專利特開平1-150303號公報(第3頁、第4頁)
然而,若如上述專利文獻1所述使磁鐵粉末生胚片材化並進行燒結,則於燒結時之磁鐵內殘留有黏合劑所包含之含有碳原子或氧原子之含有物。並且,於Nd磁鐵中,由於Nd與碳之反應性非常高,故而若於燒結步驟中直至高溫仍殘留有含碳物,則形成碳化物。其結果為,有由於所形成之碳化物會於燒結後之磁鐵的主相與粒間相之間產生空隙,從而無法緻密地燒結磁鐵整體而使磁性能顯著降低之問題。又,即便於未產生空隙之情形時,亦有由於所形成之碳化物會於燒結後之磁鐵的主相內析出αFe,使磁鐵特性大幅降低之問題。
同樣地,於Nd磁鐵中,由於Nd與氧之反應性非常高,故而若存在含氧物,則於燒結步驟中Nd與氧結合而形成金屬氧化物。其結果為有磁特性降低之問題。又,有由於Nd與氧結合而使Nd含量與基於化學計量組成(例如Nd2Fe14B)之含量相比不足,於燒結後之磁鐵的主相內析出αFe而使磁鐵特性大幅降低之問題。
本發明係為了解決上述先前之問題方面而成者,其目的在於提供一種於使磁鐵粉末生胚片材化並燒結之情形時,可預先減少磁鐵中所含有之碳量或氧量,其結果可防止磁鐵特性降低之稀土類永久磁鐵及稀土類永久磁鐵之製造方法。
為了達成上述目的,本發明之稀土類永久磁鐵之特徵在於藉由如下步驟製造:將磁鐵原料粉碎成磁鐵粉末之步驟,生成使上述經粉碎之磁鐵粉末與包含長鏈烴或不含有氧原子之單體之聚合物或共聚物的黏合劑加以混合而成之混合物之步驟,使上述混合物成形為片狀而製作生胚片材之步驟,藉由將上述生胚片材於非氧化性環境下以黏合劑分解溫度保持一定時間而使上述黏合劑飛散並去除之步驟,對去除上述黏合劑之上述生胚片材使溫度上升至煅燒溫度而進行燒結之步驟。
又,本發明之稀土類永久磁鐵之特徵在於:上述黏合劑為聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物中之任一者。
又,本發明之稀土類永久磁鐵之特徵在於:使用聚乙烯、聚丙烯以外之樹脂作為上述黏合劑。
又,本發明之稀土類永久磁鐵之特徵在於:於使上述黏合劑飛散並去除之步驟中,使上述生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下以200℃~900℃保持一定時間。
又,本發明之稀土類永久磁鐵之製造方法之特徵在於包括:將磁鐵原料粉碎成磁鐵粉末之步驟,生成使上述經粉碎之磁鐵粉末與包含長鏈烴或不含有氧原子之單體之聚合物或共聚物的黏合劑加以混合而成之混合物之步驟,使上述混合物成形為片狀而製作生胚片材之步驟,藉由將上述生胚片材於非氧化性環境下以黏合劑分解溫度保持一定時間而使上述黏合劑飛散並去除之步驟,對去除上述黏合劑之上述生胚片材使溫度上升至煅燒溫度而進行燒結之步驟。
又,本發明之稀土類永久磁鐵之製造方法之特徵在於:上述黏合劑為聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物中之任一者。
又,本發明之稀土類永久磁鐵之製造方法之特徵在於:使用聚乙烯、聚丙烯以外之樹脂作為上述黏合劑。
又,本發明之稀土類永久磁鐵之製造方法之特徵在於:於使上述黏合劑飛散並去除之步驟中,使上述生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下以200℃~900℃保持一定時間。
根據具有上述構成之本發明之稀土類永久磁鐵,由於利用燒結使磁鐵粉末與黏合劑加以混合並成形為片狀之生胚片材而成的磁鐵構成永久磁鐵,因此使燒結引起之收縮變得均勻而不產生燒結後之翹曲或凹陷等變形,又,由於消除壓製時之壓力不均,故而無需先前進行之燒結後之修正加工,可使製造步驟簡化。藉此,可以較高尺寸精度使永久磁鐵成形。又,即便為使永久磁鐵薄膜化之情形時,亦不會降低材料良率,而可防止加工工時增加。又,藉由使用長鏈烴或不含有氧原子之單體之聚合物或共聚物作為黏合劑,可使磁鐵內含有之氧量降低。進而,藉由於燒結前使添加有黏合劑之磁鐵粉末於非氧化性環境下保持一定時間,可預先降低磁鐵內含有之碳量。其結果為,可抑制燒結後之磁鐵的主相內析出αFe,可緻密地燒結磁鐵整體,並防止保磁力降低。
又,根據本發明之稀土類永久磁鐵,又,藉由使用不含有氧原子之聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物作為黏合劑,可使磁鐵內含有之氧量降低。
又,根據本發明之稀土類永久磁鐵,於使黏合劑溶解於有機溶劑中之情形時,可使其對於甲苯等通用溶劑適當地溶解。因此,尤其於藉由漿料成形使生胚片材成形之情形時,可使自含有磁鐵粉末與黏合劑之漿料向生胚片材之成形適當地進行。
又,根據本發明之稀土類永久磁鐵,藉由將混練黏合劑而成之生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下預燒,可更確實地降低磁鐵內含有之碳量。
又,根據本發明之稀土類永久磁鐵之製造方法,由於藉由燒結使磁鐵粉末與黏合劑混合並成形為片狀之生胚片材而製造永久磁鐵,因此使製造之永久磁鐵中,燒結引起之收縮變得均勻而不產生燒結後之翹曲或凹陷等變形,又,由於消除壓製時之壓力不均,故而無需先前進行之燒結後之修正加工,可使製造步驟簡化。藉此,可以較高尺寸精度使永久磁鐵成形。又,即便為使永久磁鐵薄膜化之情形時,亦不會降低材料良率,而可防止加工工時增加。又,藉由使用長鏈烴或不含有氧原子之單體之聚合物或共聚物作為黏合劑,可使磁鐵內含有之氧量降低。進而,藉由於燒結前使添加有黏合劑之磁鐵粉末於非氧化性環境下保持一定時間,可預先降低磁鐵內含有之碳量。其結果為,可抑制燒結後之磁鐵的主相內析出αFe,可緻密地燒結磁鐵整體,並防止保磁力降低。
又,根據本發明之稀土類永久磁鐵之製造方法,藉由使用不含有氧原子之聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物作為黏合劑,可使磁鐵內含有之氧量降低。
又,根據本發明之稀土類永久磁鐵之製造方法,於使黏合劑溶解於有機溶劑中之情形時,可使其對於甲苯等通用溶劑適當地溶解。因此,尤其於藉由漿料成形使生胚片材成形之情形時,可使自含有磁鐵粉末與黏合劑之漿料向生胚片材之成形適當地進行。
進而,根據本發明之稀土類永久磁鐵之製造方法,藉由將混練黏合劑而成之生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下預燒,可更確實地降低磁鐵內含有之碳量。
以下,一面參照圖式,一面對將本發明之稀土類永久磁鐵及稀土類永久磁鐵之製造方法具體化的一實施形態進行詳細說明。 [永久磁鐵之構成]
首先,對本發明之永久磁鐵1之構成進行說明。圖1為表示本發明之永久磁鐵1的整體圖。再者,雖然圖1所示之永久磁鐵1具備扇型形狀,但永久磁鐵1之形狀係根據衝壓形狀而發生變化。
本發明之永久磁鐵1為Nd-Fe-B系磁鐵。再者,將各成分之含量設為Nd:27~40 wt%、B:1~2 wt%、Fe(電解鐵):60~70 wt%。又,亦可為了提高磁特性而少量含有Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等其他元素。圖1為表示本實施形態之永久磁鐵1的整體圖。
此處,永久磁鐵1係具備例如0.05 mm~10 mm(例如1 mm)之厚度之薄膜狀永久磁鐵。並且,如下所述藉由對將磁鐵粉末與黏合劑混合而成之混合物(漿料或複合物)成形為片狀之成形體(生胚片材)進行燒結而製作。
又,於本發明中,磁鐵粉末中所混合之黏合劑可使用樹脂、長鏈烴或該等之混合物等。
進而,於黏合劑中使用樹脂之情形時,較佳為使用結構中不含有氧原子且具有解聚性之聚合物。具體而言,包含選自以下通式(3)所表示之單體之1種或2種以上之聚合物或共聚物的聚合物較為符合。
(其中,R1及R2表示氫原子、低級烷基、苯基或乙烯基)。
作為符合上述條件之聚合物,例如有:作為異丁烯之聚合物之聚異丁烯(PIB,polyisobutene)、作為異戊二烯之聚合物之聚異戊二烯(異戊二烯橡膠,IR,isoprene rubber)、作為1,3-丁二烯之聚合物之聚丁二烯(丁二烯橡膠,BR,butadiene rubber)、作為苯乙烯之聚合物之聚苯乙烯、作為苯乙烯與異戊二烯之共聚物之苯乙烯-異戊二烯嵌段共聚物(SIS,Styrene-isoprene-styrene)、作為異丁烯與異戊二烯之共聚物之丁基橡膠(IIR,isobutylene isoprene rubber)、作為苯乙烯與丁二烯之共聚物之苯乙烯-丁二烯嵌段共聚物(SBS,Styrene-Butadiene-Styrene)、作為2-甲基-1-戊烯之聚合物之2-甲基-1-戊烯聚合樹脂、作為2-甲基-1-丁烯之聚合物之2-甲基-1-丁烯聚合樹脂、作為α-甲基苯乙烯之聚合物之α-甲基苯乙烯聚合樹脂等。再者,較理想為對於α-甲基苯乙烯聚合樹脂添加低分子量之聚異丁烯以賦予柔軟性。又,作為用於黏合劑之樹脂,亦可設為含有少量含有氧原子之單體之聚合物或共聚物(例如,聚甲基丙烯酸丁酯或聚甲基丙烯酸甲酯等)的構成。進而,亦可使一部分不符合上述通式(3)之單體共聚合。即便於此情形時,亦可達成本案發明之目的。
再者,於藉由漿料成形而使生胚片材成形之情形時,為了使黏合劑適當地溶解於甲苯等通用溶劑中,作為用於黏合劑之樹脂,較理想為使用聚乙烯、聚丙烯以外之樹脂(即,包含通式(3)之R1及R2均為氫原子的單體之聚合物,及包含通式(3)之R1及R2中一者為氫原子而另一者為甲基的單體之聚合物除外)。另一方面,於藉由熱熔成形使生胚片材成形之情形時,為了於將成形之生胚片材加熱軟化的狀態下進行磁場配向,較理想為使用熱塑性樹脂。
又,上述聚合物中,例如聚異丁烯係由以下通式(4)所表示。
(其中,n表示1以上之自然數)
又,上述聚合物中,例如聚異戊二烯係由以下通式(5)所表示。
(其中,n表示1以上之自然數)
又,上述聚合物中,例如聚丁二烯係由以下通式(6)所表示。
(其中,n表示1以上之自然數)
另一方面,於黏合劑中使用長鏈烴之情形時,較佳為使用室溫下為固體、室溫以上為液體之長鏈飽和烴(長鏈烷烴)。具體而言,較佳為使用碳數18以上之長鏈飽和烴。並且,於藉由熱熔成形使生胚片材成形之情形時,於對生胚片材磁場配向時,係於將生胚片材加熱至長鏈烴之熔點以上而使其軟化之狀態下進行磁場配向。
藉由使用滿足上述條件之黏合劑作為製作生胚片材時向磁鐵粉末中混練之黏合劑,可降低磁鐵內含有之碳量及氧量。具體而言,係使燒結後於磁鐵中殘存之碳量為1500 ppm以下,更佳為1000 ppm以下。又,使燒結後於磁鐵中殘存之氧量為5000 ppm以下,更佳為2000 ppm以下。
又,關於黏合劑之添加量,於使磁鐵粉末與黏合劑之混合物成形為片狀時,為了提高片材之厚度精度,將其設為適當地填充有磁鐵粒子間之空隙之量。例如,將黏合劑添加後之混合物中之黏合劑相對於磁鐵粉末與黏合劑的合計量之比率為1 wt%~40 wt%,更佳為2 wt%~30 wt%,進而較佳為3 wt%~20 wt%。 [永久磁鐵之製造方法]
其次,使用圖2對本發明之永久磁鐵1之製造方法進行說明。圖2係表示本實施形態之永久磁鐵1之製造步驟的說明圖。
首先,製造包含特定分率之Nd-Fe-B(例如Nd:32.7 wt%、Fe(電解鐵):65.96 wt%、B:1.34 wt%)之鑄錠。其後,藉由搗碎機或破碎機等將鑄錠粗粉碎成200 μm左右之大小。或,將鑄錠熔解,利用薄帶連鑄(Strip Casting)法製作片材,並利用氫氣壓碎法使其粗粉化。
其次,於(a)氧含量實質上為0%且包含氮氣、Ar氣、He氣等惰性氣體之環境中,或(b)氧含量為0.0001~0.5%且包含氮氣、Ar氣、He氣等惰性氣體之環境中,藉由噴射磨機11將粗粉碎之磁鐵粉末微粉碎,形成具有特定尺寸以下(例如1.0 μm~5.0 μm)之平均粒徑之微粉末。再者,所謂氧濃度實質上為0%,意指並不限定於氧濃度完全為0%之情形,亦可含有於微粉之表面形成極少量氧化覆膜之程度之量的氧。再者,亦可使用濕式粉碎作為磁鐵原料之粉碎方法。例如於利用珠磨機之濕式粉碎中,對粗粉碎之磁鐵粉末使用甲苯作為溶劑,並進行微粉碎直至平均粒徑為特定尺寸以下(例如0.1 μm~5.0 μm)。其後,利用真空乾燥等使濕式粉碎後之有機溶劑中所含有之磁鐵粉末乾燥,取出乾燥之磁鐵粉末。又,亦可設為如下構成,於不自有機溶劑取出磁鐵粉末之情況下進而將黏合劑添加於有機溶劑中進行混練,而獲得下述漿料12。
藉由使用上述濕式粉碎,與乾式粉碎相比可將磁鐵原料粉碎至更微小之粒徑。但,若進行濕式粉碎,則有即便於其後藉由進行真空乾燥等而使有機溶劑揮發,有機溶劑等有機化合物亦會殘留於磁鐵內之問題。然而,藉由進行下述預燒處理,可使黏合劑與殘留之有機化合物一同熱分解,並自磁鐵內除去碳。
另一方面,製作向利用噴射磨機11等微粉碎之微粉末中添加之黏合劑溶液。此處,作為黏合劑,可如上所述使用樹脂、長鏈烴或該等之混合物等。例如,於使用樹脂之情形時,係使用包含不含有氧原子之單體之聚合物或共聚物的樹脂,於使用長鏈烴之情形時,較佳為使用長鏈飽和烴(長鏈烷烴)。並且,藉由使黏合劑稀釋於溶劑中而製作黏合劑溶液。作為用於稀釋之溶劑,並無特別限制,可使用異丙醇、乙醇、甲醇等醇類,戊烷、己烷等低級烴類,苯、甲苯、二甲苯等芳香族類,乙酸乙酯等酯類、酮類、該等之混合物等,此處使用甲苯或乙酸乙酯。
繼而,對利用噴射磨機11等而分級之微粉末添加上述黏合劑溶液。藉此,生成使磁鐵原料之微粉末、黏合劑及有機溶劑混合而成之漿料12。此處,關於黏合劑溶液之添加量,添加後之漿料中之黏合劑相對於磁鐵粉末與黏合劑的合計量之比率較佳為成為1 wt%~40 wt%之量,更佳為成為2 wt%~30 wt%之量,進而較佳為成為3 wt%~20 wt%之量。例如,藉由對100 g之磁鐵粉末添加20 wt%之黏合劑溶液100 g而生成漿料12。再者,黏合劑溶液之添加係於包含氮氣、Ar氣、He氣等惰性氣體之環境下進行。
繼而,自生成之漿料12形成生胚片材13。作為形成生胚片材13之方法,例如,可藉由根據需要以適當方式將生成之漿料12塗敷於分隔件等支持基材上並使其乾燥之方法等而進行。再者,塗敷方式較佳為刮刀方式或充模方式等層厚控制性優異之方式。又,較佳為併用消泡劑等而充分進行脫泡處理以使展開層中不殘留氣泡。再者,詳細之塗敷條件如下。
.塗敷方式:刮刀或充模方式
.間距:1 mm
.支持基材:聚矽氧處理聚酯膜
.乾燥條件:90℃×10分鐘之後,130℃×30分鐘
再者,較理想為將生胚片材13之設定厚度設定為0.05 mm~10 mm之範圍。若厚度比0.05 mm薄,則必需進行多層積層故而使生產性降低。另一方面,若厚度比10 mm厚,則為了抑制乾燥時之發泡而必需降低乾燥速度,使生產性顯著降低。
又,於使磁鐵粉末與黏合劑混合時,亦可不使混合物形成漿料12,而於不添加有機溶劑之情況下形成包含磁鐵粉末與黏合劑之粉末狀混合物(以下稱作複合物)。並且,亦可進行藉由加熱複合物而使複合物熔融,於成為流體狀後塗敷於分隔件等支持基材上之熱熔塗敷。藉由使利用熱熔塗敷而塗敷之複合物散熱而凝固,可於支持基材上形成長條片狀之生胚片材13。再者,加熱熔融複合物時之溫度根據所使用之黏合劑之種類或量而不同地設為50~300℃。但,必需設為高於所使用之黏合劑之熔點的溫度。再者,磁鐵粉末與黏合劑之混合,例如係藉由於有機溶劑中分別投入磁鐵粉末與黏合劑,並利用攪拌機進行攪拌而進行。並且,於攪拌後加熱含有磁鐵粉末與黏合劑之有機溶劑而使有機溶劑汽化,藉此提取複合物。又,尤其於利用濕式法粉碎磁鐵粉末之情形時,亦可設為如下構成:於不自用於粉碎之有機溶劑中取出磁鐵粉末之情況下將黏合劑添加於有機溶劑中並進行混練,其後使有機溶劑揮發而獲得複合物。
又,針對塗敷於支持基材上之生胚片材13,於乾燥前於相對於輸送方向交差之方向上施加脈衝磁場。施加之磁場之強度設為5000[Oe]~150000[Oe],較佳為設為10000[Oe]~120000[Oe]。再者,雖然磁場配向之方向需要考慮自生胚片材13成形之永久磁鐵1所要求之磁場方向而決定,但較佳為面內方向。再者,於藉由熱熔成形使生胚片材成形之情形時,係於加熱生胚片材至黏合劑之玻璃轉移點或熔點以上而軟化之狀態下進行磁場配向。又,亦可於成形之生胚片材凝固前進行磁場配向。
其次,將生胚片材13衝壓成所期望之製品形狀(例如,圖1所示之扇形形狀)而使成形體14成形。
其後,藉由使成形之成形體14於非氧化性環境(本發明中尤其為氫氣環境或氫與惰性氣體之混合氣體環境)中以黏合劑分解溫度保持數小時(例如5小時)而進行氫氣中預燒處理。於氫氣環境下進行之情形時,例如將預燒中之氫氣之供給量設為5 L/min。藉由進行氫氣中預燒處理,可使黏合劑藉由解聚反應等而分解成單體並飛散而去除。即,會進行降低成形體14中之碳量之所謂脫碳。又,氫氣中預燒處理係以使成形體14中之碳量成為1500 ppm以下,更佳為1000 ppm以下之條件而進行。藉此,可利用其後之燒結處理將永久磁鐵1整體緻密地燒結,並且不會降低剩餘磁通密度或保磁力。
再者,黏合劑分解溫度係基於黏合劑分解生成物及分解殘渣之分析結果而決定。具體而言,收集黏合劑之分解生成物,可選擇不生成單體以外之分解生成物,且於殘渣之分析中亦未檢測出由殘留之黏合劑成分之副反應所形成的生成物之溫度範圍。根據黏合劑之種類而不同地設為200℃~900℃,更佳為400℃~600℃(例如600℃)。
又,尤其於藉由濕式粉碎使磁鐵原料於有機溶劑中粉碎之情形時,係於構成有機溶劑之有機化合物之熱分解溫度且黏合劑分解溫度下進行預燒處理。藉此,亦可去除殘留之有機溶劑。關於有機化合物之熱分解溫度,雖然根據所使用之有機溶劑之種類而決定,但只要為上述黏合劑分解溫度則基本上亦可進行有機化合物之熱分解。
繼而,進行燒結藉由氫氣中預燒處理而預燒之成形體14的燒結處理。於燒結處理中,以特定之升溫速度升溫至800℃~1200℃左右,並保持2小時左右。其間為真空煅燒,作為真空度較佳為設為10-4 Torr以下。其後進行冷卻,並再次於600℃~1000℃下進行熱處理2小時。並且,燒結之結果為製造永久磁鐵1。
又,亦可使用加壓燒結代替真空燒結。作為加壓燒結,例如有:熱壓燒結、熱均壓(HIP,Hot Isostatic Pressing)燒結、超高壓合成燒結、氣體加壓燒結、放電電漿(SPS,Spark Plasma Sintering)燒結等。藉由利用加壓燒結進行燒結,可降低燒結溫度並抑制燒結時之晶粒生長。藉此,可進而提高磁性能。 [實施例]
以下,一面與比較例進行比較,一面說明本發明之實施例。 (實施例1)
實施例1為Nd-Fe-B系磁鐵,合金組成以wt%計設為Nd/Fe/B=32.7/65.96/1.34。又,使用聚異丁烯作為黏合劑,使用甲苯作為溶劑,對100 g之磁鐵粉末添加20 wt%之黏合劑溶液100 g,藉此生成添加後之漿料中之黏合劑相對於磁鐵粉末與黏合劑的合計量之比率成為16.7 wt%之漿料。其後,利用充模方式將漿料塗敷於基材上而使生胚片材成形,進而,衝壓成所期望之製品形狀。又,預燒處理係藉由於氫氣環境中以600℃保持5小時而進行。並且,將預燒中氫氣之供給量設為5 L/min。再者,其他步驟設為與上述[永久磁鐵之製造方法]相同之步驟。 (實施例2)
將混合之黏合劑設為聚異戊二烯(IR)。其他條件與實施例1相同。 (實施例3)
將混合之黏合劑設為聚丁二烯(BR)。其他條件與實施例1相同。 (實施例4)
將混合之黏合劑設為聚苯乙烯。其他條件與實施例1相同。 (實施例5)
將混合之黏合劑設為苯乙烯與異戊二烯之共聚物(SIS)。其他條件與實施例1相同。 (實施例6)
將混合之黏合劑設為異丁烯與異戊二烯之共聚物(IIR)。其他條件與實施例1相同。 (實施例7)
將混合之黏合劑設為苯乙烯與丁二烯之共聚物(SBS)。其他條件與實施例1相同。 (實施例8)
將混合之黏合劑設為2-甲基-1-戊烯聚合樹脂。其他條件與實施例1相同。 (實施例9)
將混合之黏合劑設為2-甲基-1-丁烯聚合樹脂。其他條件與實施例1相同。 (實施例10)
將混合之黏合劑設為α-甲基苯乙烯聚合樹脂,並且為了賦予柔軟性而添加低分子量之聚異丁烯。其他條件與實施例1相同。 (實施例11)
將混合之黏合劑設為作為長鏈烷烴之二十八烷。其他條件與實施例1相同。 (比較例1)
將混合之黏合劑設為聚甲基丙烯酸丁酯。其他條件與實施例1相同。 (比較例2)
將混合之黏合劑設為聚甲基丙烯酸甲酯。其他條件與實施例1相同。 (比較例3)
將混合之黏合劑設為聚乙烯。其他條件與實施例1相同。 (比較例4)
將混合之黏合劑設為聚丙烯。其他條件與實施例1相同。 (比較例5)
於不進行關於氫氣中預燒處理之步驟的情況下製造。其他條件與實施例1相同。 (實施例與比較例之比較)
測定殘存於上述實施例1~11及比較例1、2、5之各磁鐵內之氧濃度[pm]及碳濃度[pm]。又,針對上述實施例1~11及比較例1~5,判定自漿料成形生胚片材時之成形性。又,針對實施例1~11及比較例1、2、5之各磁鐵測定剩餘磁通密度[kG]及保磁力[kOe]。圖3表示測定結果之一覽。
如圖3所示,可知使用不含有氧原子之聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物(SIS)、異丁烯與異戊二烯之共聚物(IIR)、苯乙烯與丁二烯之共聚物(SBS)、2-甲基-1-戊烯聚合樹脂、2-甲基-1-丁烯聚合樹脂及α-甲基苯乙烯聚合樹脂、二十八烷作為黏合劑之情形,與使用含有氧原子之聚甲基丙烯酸丁酯或聚甲基丙烯酸甲酯作為黏合劑之情形相比較,可大幅降低磁鐵內含有之氧量。具體而言,可使燒結後於磁鐵中殘存之氧量為5000 ppm以下,更具體而言,可成為2000 ppm以下。其結果為,燒結步驟中Nd不會與氧結合形成Nd氧化物,又,可防止αFe之析出。因此,如圖3所示,關於剩餘磁通密度或保磁力,使用聚異丁烯等作為黏合劑者亦顯示較高之值。
又,如圖3所示,可知進行氫氣中預燒處理之情形與未進行氫氣中預燒處理之情形相比較,可大幅降低磁鐵內之碳量。又,進行氫氣中預燒處理之結果為,燒結後於磁鐵中殘存之碳量成為1500 ppm以下,尤其是除了實施例2以外成為1000 ppm以下,磁鐵之主相與粒間相之間不產生空隙,又,可使磁鐵整體成為經緻密地燒結之狀態,並可防止剩餘磁通密度降低。
又,如圖3所示,於使用聚乙烯或聚丙烯作為黏合劑之情形時,由於黏合劑對甲苯等通用溶劑難以溶解,故而於自漿料成形生胚片材時,向生胚片材之成形未能適當地進行。另一方面,於使用聚異丁烯等作為黏合劑之情形時,使黏合劑對甲苯等通用溶劑溶解,及自漿料向生胚片材之成形得以適當地進行。
如以上說明,於本實施形態之永久磁鐵1及永久磁鐵1之製造方法中,係將磁鐵原料粉碎成磁鐵粉末,並藉由使經粉碎之磁鐵粉末與包含長鏈烴或選自上述通式(3)所表示之單體(其中,式(3)中之R1及R2表示氫原子、低級烷基、苯基或乙烯基)之1種或2種以上之聚合物、共聚物或該等之混合物的黏合劑加以混合而生成混合物(漿料或複合物等)。並且,使所生成之混合物成形為片狀而製作生胚片材。其後,藉由使所製作之生胚片材於非氧化性環境下以黏合劑分解溫度保持一定時間而使黏合劑藉由解聚反應等而分解為單體並飛散而去除,對去除黏合劑之生胚片材使溫度上升至煅燒溫度而進行燒結,藉此製造永久磁鐵1。其結果為,使燒結引起之收縮變得均勻而不產生燒結後之翹曲或凹陷等變形,又,由於消除壓製時之壓力不均,故而無需先前進行之燒結後之修正加工,可使製造步驟簡化。藉此,可以較高尺寸精度使永久磁鐵成形。又,即便為使永久磁鐵薄膜化之情形時,亦不會降低材料良率,並且可防止加工工時增加。又,藉由使用包含長鏈烴或不含有氧原子之單體之聚合物或共聚物的黏合劑作為黏合劑,可使磁鐵內含有之氧量降低。尤其是,若使用不含有氧原子之聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物作為黏合劑,則可使磁鐵內含有之氧量降低。進而,藉由進行使添加有黏合劑之磁鐵粉末於燒結前於非氧化性環境下保持一定時間之預燒處理,使黏合劑飛散並去除,因此可預先降低磁鐵內含有之碳量。其結果為,可抑制燒結後之磁鐵的主相內析出αFe,可緻密地燒結磁鐵整體,並防止保磁力降低。又,藉由使用聚乙烯或聚丙烯以外之樹脂(例如聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物)作為黏合劑,可使黏合劑適當地溶解於甲苯等通用溶劑中。因此,尤其於藉由漿料成形使生胚片材成形之情形時,自漿料向生胚片材之成形可適當地進行。
又,於預燒處理中,使混練有黏合劑之生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下以200℃~900℃、更佳為400℃~600℃保持一定時間,因此可更確實地降低磁鐵內含有之碳量。
再者,本發明並不限定於上述實施例,當然可於不脫離本發明之要旨之範圍內進行各種改良、變形。
例如,磁鐵粉末之粉碎條件、混練條件、預燒條件、燒結條件等並不限於上述實施例所記載之條件。例如,上述實施例中藉由使用噴射磨機之乾式粉碎而粉碎磁鐵原料,但亦可藉由利用珠磨機之濕式粉碎進行粉碎。又,雖然上述實施例中,藉由狹縫式模具方式形成生胚片材,但亦可使用其他方式(例如軋輥方式、缺角輪塗敷方式、擠出成型、射出成型、模具成型、刮刀方式等)形成生胚片材。其中,較理想為使用可使漿料或流體狀之複合物於基材上高精度地成形之方式。
又,亦可省略預燒處理。即便於該情形時,黏合劑亦會於燒結中熱分解,可期待一定之脫碳效果。又,預燒處理亦可於氫氣以外之環境下進行。
又,本發明中係舉出Nd-Fe-B系磁鐵為例進行說明,亦可使用其他磁鐵(例如鈷磁鐵、鋁鎳鈷磁鐵、鐵氧體磁鐵等)。又,關於磁鐵之合金組成,本發明中係將Nd成分設為多於計量組成,亦可設為計量組成。
1‧‧‧永久磁鐵
11‧‧‧噴射磨機
12‧‧‧漿料
13‧‧‧生胚片材
14‧‧‧成形體
圖1係表示本發明之永久磁鐵的整體圖。
圖2係表示本發明之永久磁鐵之製造步驟的說明圖。
圖3係表示對實施例及比較例之各磁鐵的各種測定結果之圖。
1‧‧‧永久磁鐵
11‧‧‧噴射磨機
12‧‧‧漿料
13‧‧‧生胚片材
14‧‧‧成形體
权利要求:
Claims (8)
[1] 一種稀土類永久磁鐵,其特徵在於藉由如下步驟製造:將磁鐵原料粉碎成磁鐵粉末之步驟,生成混合物之步驟,該混合物係混合上述經粉碎之磁鐵粉末與包含長鏈烴之黏合劑、包含選自下述通式(1) (其中,R1及R2表示氫原子、低級烷基、苯基或乙烯基)所表示之單體中之1種或2種以上的聚合物或共聚物之黏合劑或包含上述長鏈烴與上述聚合物或共聚物之混合物的黏合劑中之任一種黏合劑而成者,使上述混合物成形為片狀而製作生胚片材之步驟,藉由將上述生胚片材於非氧化性環境下以黏合劑分解溫度保持一定時間,而使上述黏合劑飛散並去除之步驟,及將溫度上升至煅燒溫度,燒結去除上述黏合劑之上述生胚片材之步驟。
[2] 如請求項1之稀土類永久磁鐵,其中上述黏合劑為聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物中之任一者。
[3] 如請求項1之稀土類永久磁鐵,其中作為上述黏合劑,包含通式(1)之R1及R2均為氫原子的單體之聚合物,及包含通式(1)之R1及R2中之一者為氫原子而另一者為甲基的單體之聚合物除外。
[4] 如請求項1至3中任一項之稀土類永久磁鐵,其中於使上述黏合劑飛散並去除之步驟中,使上述生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下以200℃~900℃保持一定時間。
[5] 一種稀土類永久磁鐵之製造方法,其特徵在於包括:將磁鐵原料粉碎成磁鐵粉末之步驟,生成混合物之步驟,該混合物係混合上述經粉碎之磁鐵粉末與包含長鏈烴之黏合劑、包含選自下述通式(2) (其中,R1及R2表示氫原子、低級烷基、苯基或乙烯基)所表示之單體中之1種或2種以上的聚合物或共聚物之黏合劑或包含上述長鏈烴與上述聚合物或共聚物之混合物的黏合劑中之任一種黏合劑而成者,使上述混合物成形為片狀而製作生胚片材之步驟,藉由將上述生胚片材於非氧化性環境下以黏合劑分解溫度保持一定時間,而使上述黏合劑飛散並去除之步驟,及將溫度上升至煅燒溫度,燒結去除上述黏合劑之上述生胚片材之步驟。
[6] 如請求項5之稀土類永久磁鐵之製造方法,其中上述黏合劑為聚異丁烯、聚異戊二烯、聚丁二烯、聚苯乙烯、苯乙烯與異戊二烯之共聚物、異丁烯與異戊二烯之共聚物或苯乙烯與丁二烯之共聚物中之任一者。
[7] 如請求項5之稀土類永久磁鐵之製造方法,其中作為上述黏合劑,包含通式(2)之R1及R2均為氫原子的單體之聚合物,及包含通式(2)之R1及R2中之一者為氫原子而另一者為甲基的單體之聚合物除外。
[8] 如請求項5至7中任一項之稀土類永久磁鐵之製造方法,其中於使上述黏合劑飛散並去除之步驟中,使上述生胚片材於氫氣環境下或氫與惰性氣體之混合氣體環境下以200℃~900℃保持一定時間。
类似技术:
公开号 | 公开日 | 专利标题
TWI459410B|2014-11-01|Manufacture method of rare earth permanent magnets and rare earth permanent magnets
US20200357545A1|2020-11-12|Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
TWI446374B|2014-07-21|Manufacture method of rare earth permanent magnet and rare earth permanent magnet
JP2013219322A|2013-10-24|希土類永久磁石及び希土類永久磁石の製造方法
TW201330022A|2013-07-16|稀土類永久磁石及稀土類永久磁石之製造方法
TWI453772B|2014-09-21|Manufacture method of rare earth permanent magnets and rare earth permanent magnets
TWI465508B|2014-12-21|Manufacture method of rare earth permanent magnets and rare earth permanent magnets
JP5420700B2|2014-02-19|希土類永久磁石及び希土類永久磁石の製造方法
WO2015121915A1|2015-08-20|希土類永久磁石及び希土類永久磁石の製造方法
JP2013219321A|2013-10-24|希土類永久磁石及び希土類永久磁石の製造方法
TWI453771B|2014-09-21|Manufacture method of rare earth permanent magnet and rare earth permanent magnet
JP5420699B2|2014-02-19|希土類永久磁石及び希土類永久磁石の製造方法
JP2013191607A|2013-09-26|希土類永久磁石及び希土類永久磁石の製造方法
TW201301319A|2013-01-01|稀土類永久磁鐵及稀土類永久磁鐵之製造方法
JP2013191614A|2013-09-26|希土類永久磁石及び希土類永久磁石の製造方法
TW201532085A|2015-08-16|稀土類永久磁石及稀土類永久磁石之製造方法
同族专利:
公开号 | 公开日
HUE053709T2|2021-07-28|
US20160196903A1|2016-07-07|
WO2012176509A1|2012-12-27|
US9281107B2|2016-03-08|
KR20140036998A|2014-03-26|
EP3786989A1|2021-03-03|
US9991034B2|2018-06-05|
US20160141100A1|2016-05-19|
CN103081038B|2017-03-08|
KR101878998B1|2018-07-16|
TWI459410B|2014-11-01|
CN103081038A|2013-05-01|
EP2685474A4|2015-04-15|
US20130285778A1|2013-10-31|
EP2685474B1|2020-12-23|
EP2685474A1|2014-01-15|
US9991033B2|2018-06-05|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
CN105190802A|2013-03-12|2015-12-23|因太金属株式会社|RFeB系烧结磁体的制造方法和利用其制造的RFeB系烧结磁体|
TWI666668B|2015-03-24|2019-07-21|日商日東電工股份有限公司|具有非平行的易磁化軸配向的稀土類永久磁石形成用燒結體之製造方法|
TWI674594B|2015-03-24|2019-10-11|日商日東電工股份有限公司|稀土類磁石形成用燒結體及稀土類燒結磁石|
TWI679658B|2015-03-24|2019-12-11|日商日東電工股份有限公司|稀土類永久磁石及具有稀土類永久磁石之旋轉機|
TWI682409B|2015-03-24|2020-01-11|日商日東電工股份有限公司|稀土類磁鐵及使用該磁鐵的線性馬達|
US10867732B2|2015-03-24|2020-12-15|Nitto Denko Corporation|Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet|JPH0436563B2|1986-04-30|1992-06-16|Tokin Corp||
JPS6410303A|1987-07-03|1989-01-13|Fuji Electric Co Ltd|Program storing metho-d|
JPH01150303A|1987-12-08|1989-06-13|Mitsubishi Steel Mfg Co Ltd|Magnetic anisotropy type sintered magnet and manufacture thereof|
JPH05320708A|1992-01-10|1993-12-03|Kawasaki Steel Corp|焼結性粉末射出成形用バインダおよび組成物|
US5427734A|1992-06-24|1995-06-27|Sumitomo Special Metals Co., Ltd.|Process for preparing R-Fe-B type sintered magnets employing the injection molding method|
EP0576282B1|1992-06-24|1997-09-24|Sumitomo Special Metals Co., Ltd.|A process for preparing R-Fe-B type sintered magnets employing the injection molding method|
JPH06116605A|1992-10-01|1994-04-26|Kawasaki Steel Corp|希土類系永久磁石用合金粉末の成形助剤及びその添加合金粉末|
JPH09283358A|1996-04-09|1997-10-31|Hitachi Metals Ltd|R−Fe−B系焼結磁石の製造方法|
US6361738B1|1998-04-22|2002-03-26|Sumitomo Special Metals Co., Ltd.|Method of producing R-Fe-B permanent magnet, and lubricant agent and release agent for use in shaping the same|
JP2000306753A|1999-04-21|2000-11-02|Sumitomo Special Metals Co Ltd|R‐Fe‐B系永久磁石の製造方法とR‐Fe‐B系永久磁石成形用潤滑剤|
JP2001006958A|1999-06-25|2001-01-12|Dainippon Ink & Chem Inc|磁石シートおよびその製造方法|
JP2003313602A|2002-04-25|2003-11-06|Mitsubishi Electric Corp|希土類磁石用粉末および前記粉末を用いた希土類磁石|
JP4364487B2|2002-07-15|2009-11-18|パナソニック株式会社|シ−トからフィルムに至る希土類ボンド磁石とそれを用いた永久磁石型モ−タ|
JP2004146713A|2002-10-28|2004-05-20|Hitachi Metals Ltd|R−t−n系磁粉の製造方法およびr−t−n系ボンド磁石の製造方法|
JP2005203555A|2004-01-15|2005-07-28|Neomax Co Ltd|焼結磁石の製造方法|
CN101031984B|2005-07-15|2011-12-21|日立金属株式会社|稀土类烧结磁体及其制造方法|
JP4635832B2|2005-11-08|2011-02-23|日立金属株式会社|希土類焼結磁石の製造方法|
JP5266522B2|2008-04-15|2013-08-21|日東電工株式会社|永久磁石及び永久磁石の製造方法|
JP5434869B2|2009-11-25|2014-03-05|Tdk株式会社|希土類焼結磁石の製造方法|
WO2012176509A1|2011-06-24|2012-12-27|日東電工株式会社|希土類永久磁石及び希土類永久磁石の製造方法|
JP5411957B2|2012-03-12|2014-02-12|日東電工株式会社|希土類永久磁石及び希土類永久磁石の製造方法|WO2012176509A1|2011-06-24|2012-12-27|日東電工株式会社|希土類永久磁石及び希土類永久磁石の製造方法|
KR20140134259A|2012-03-12|2014-11-21|닛토덴코 가부시키가이샤|희토류 영구 자석 및 희토류 영구 자석의 제조 방법|
KR20200069385A|2012-03-12|2020-06-16|닛토덴코 가부시키가이샤|희토류 영구 자석의 제조 방법|
JP6408820B2|2014-07-29|2018-10-17|日東電工株式会社|回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法|
JPWO2017022684A1|2015-07-31|2018-05-24|日東電工株式会社|希土類磁石形成用焼結体及び希土類焼結磁石|
CN106739397B|2016-11-14|2019-08-27|青岛卓英社科技股份有限公司|高取向度吸波材料的制备方法|
EP3391982A3|2017-04-21|2019-02-27|Mikro Systems Inc.|Systems, devices and methods for spark plasma sintering|
JP2018190982A|2017-05-08|2018-11-29|日東電工株式会社|希土類焼結磁石とこれに用いる希土類焼結磁石用焼結体、及び、これらを製造するために用いることができる磁場印加装置|
CN108597709B|2018-04-26|2020-12-11|安徽省瀚海新材料股份有限公司|一种耐腐蚀烧结钕铁硼的制备方法|
CN109158594A|2018-08-29|2019-01-08|江苏全球康功能纺织品有限公司|一种保健磁条的制作工艺|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
JP2011140913||2011-06-24||
JP2011140909||2011-06-24||
[返回顶部]